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Microgrid definition 

Battery Storage
Solar PV and Wind DERs Malls

Housing

HospitalDiesel Generators

Geothermal 

Power

Microgrid Operation 

and Control Center

A typical microgrid

Definition
❑ An integrated energy system composed of

multiple distributed energy resources

(DERs), energy storage systems, and

local loads, which can operate in either

grid-connected mode or islanded mode.

Characteristic

❑ Small system size 

❑ High penetration of inverter-based

resources (IBRs)

❑ Low system inertia

❑ High R/X ratio of the feeders

❑ Strong voltage and frequency (V-f) coupling 
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Challenges and Opportunities

➢ Challenges

• Higher uncertainty

• Elements that are difficult to model

o Customer behavior

o Extreme weather

• Model and parameter accessibility/Privacy

• Faster dynamics of IBRs

• Requirement for improved resilience

➢ Opportunities

• Renewable Energy

• Flexibility and Controllability of IBRs

o Address uncertainty

o Provide grid dynamic support

o Supply critical load

• Cutting-edge techniques

o Deep learning

o Reinforcement learning

Challenges and opportunities coexist in microgrids, and the key point is how 

we effectively manage the challenges and utilizing the existing resources.
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High-level 

research 

map of 

microgrid 

control 

Marks the 

presentation focus

B. She, F. Li, H. Cui, J. Zhang, and R. Bo, “Fusion of Microgrid Control with Model-Free Reinforcement Learning: Review and 

Vision,” IEEE Transactions on Smart Grid, vol. 14, no. 4, pp. 3232-3245, July 2023.
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Modularized

control

blocks for

IBRs

Improve microgrid:

o Flexibility

o Dynamic performance



Presentation Outline
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Inverter-

based
Microgrids

Combined device-

and grid-level 
economic operation

Inverter P-Q control

with trajectory tracking
capability

V-f control considering

DER inadequacy and
demand control

Virtual inertia

scheduling (VIS) with
guaranteed dynamic

performance

IBR transfer

function

Model-free 

reinforcement
learning

IBR transfer function, 

IBR-integrated power 
flow

Deep learning,

Mixed integer
linear optimization

Simulink,

TensorFlow

Grid transfer

function,
Economic dispatch

model

Simulink, Script

power flow

Andes, AMS

Gurobi, Pytorch
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Grid-level control

Device-level control
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Objective: Guaranteed Trajectory

/
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Assume a step input, the PQ output of grid-following

IBRs can be controlled smoothly and accurately

Where is response time constant that can

be freely assigned.



Key Idea: the actual response 

following the desired trajectory

➢ Objective

➢ Benefits 

Improve the controllability and flexibility of IBRs

o Intentional power injection → large time constant  

o Emergency support           → small time constant

9
H. Li, F. Li, Y. Xu, D. T. Rizy, and J. D. Kueck, “Adaptive Voltage Control with Distributed Energy Resources: Algorithm, Theoretical 
Analysis, Simulation and Field Test Verification,” IEEE Transactions on Power Systems, vol. 25, no. 3, pp. 1638-1647, August 2010.



Methodology: Adaptive gains

➢ Methodology

Pref

Qref
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id
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GFixed(s)
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PQ regulator

ud

uq

wLf

wLf

dq
abc

Current regulator

Diagram of the Proposed Adaptive 

Inverter PQ Controller
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o Use adaptive PI controller with time-

varying gains to ensure the actual 

response following the desired trajectory

o Implement the adaptive controller in the 

outer PQ regulation loop, because it has 

lower bandwidth and its output determines 

the inverter PQ response

o Do model-based analysis to inform the 

reinforcement learning based implementation
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Model-based Analysis

Inverter-based P-Q control diagram
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Question: What if Gsys(s) 

is unavailable or 

inaccurate ? 
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B. She, F. Li, H. Cui, H. Shuai, O. Oboreh-Snapps, R. Bo, N. Praisuwanna, J. Wang, L. M. Tolbert, “Inverter PQ Control with Trajectory 

Tracking Capability for Microgrids Based on Physics-informed Reinforcement Learning,” IEEE Transactions on Smart Grid, In-Press, 2023.



Data-driven Implementation: DRL

Reinforcement learning :

❑ RL is a basic machine paradigm 
formulated as a Markov Decision 

Processes.

Deep reinforcement learning:

❑ Use deep neural network to map: 
State, action → value (Q-value);

State → action

Training Target:

❑ a well-trained RL agent chooses

optimal actions for maximum

accumulated reward (best

performance)
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RL: Essentially a trial-and-error process

ActionState

Reward

Agent

Environment

State

Policy π(s,a)

Action

DNN

Agent



Physics-informed DRL and HIL Test

Diagram of Physics-informed Reinforcement Learning (RL) in the Numerical 

Simulator and Power HIL demonstration in HTB

❑ Model-based analysis

reduce learning 

space from function 

space to real space
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Test Microgrid and Training Results

Diagram of modified Banshee microgrid

Reward curve with and without model-based analysis
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Validation in MATLAB-Simulink

➢ Scenario 1-1: Scheduling Pref change

➢ Scenario 3: Grounded fault➢ Scenario 1-2: Scheduling Pref and Qref change

➢ Scenario 2: Generation loss and Power Support

15



Validation in CURENT HTB

❑ Inverters can be freely assigned any time constant and

respond either slow or fast to changing commands.

❑ The proposed control algorithm is valid under the power 

hardware-in-the-loop demonstration.

Scheduling reference change Generation reduction & recovery

16



Summary

❑ The proposed controller outperforms the conventional fixed-gain and adaptive PI controllers. 

Without manual re-tuning, it can accurately track the predefined trajectory with any assigned 

time constant.

❑ There exists a time-varying-gain adaptive PI controller that can track a predefined exponential 

trajectory for microgrid inverter-based PQ control. 

❑ The model-based analysis provides guidelines for deep RL training, which relieves the training 

pressure and saves training time. In turn, the implementation of physics-informed deep RL 

solves the problem of unavailability and uncertainty in the model-based method. 
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Background and Motivation
19

D E R  C apacity:

over-load

A dequate

L oad C ondition:

Inadequate

heavy-loadlight-load

T ransition zone

An islanded microgrid forms a self-sufficient system with grid-

forming IBRs supplied by distributed energy resources (DERs).

DER inadequacy under various load level

➢ Background

➢ Challenges

Conflict between fluctuating DC side DERs capacity and 

automatic load sharing based on fixed droop gains.

o IBR saturation caused by overloads

o Large frequency and voltage deviation

o Unexpected DC voltage dip and IBR trip
Diagram of DC voltage dip and IBR trip

caused by DER inadequacy
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Objective
20

P (p.u.)

Q (p.u.)

Pg

Qg

Constrained operation of IBRs

➢ Objective

o Accurately control the output of GFM inverters when 

DER is insufficient;

o Improve load sharing results based on real-time DER 

capacity;

o Coordinate voltage and frequency (V-f) regulation 
under the condition of constrained DER capacity;

Capacity circle

➢ Benefits 

o Improve the controllability and stability of IBRs

o Make the best use of limited DER capacity

o Reduce V-f deviation

o Reduce involuntary load shedding

20



Methodology (1)
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Diagram of a droop-controlled GFM inverter 

supplying V-f dependent load 

PCC
ai

bi

ci

av

bv

cv

fL
fR

fC

ae

be

ce

gai

gbi

gci

gqi

gdi

wCf

wCf

PI

PI

dv

qv

drefv

qrefv
0



0V

kdv
mQ

0Q

0w

kdf
mP0P

1/s

dq
abc

abci


dqi

dq
abc

gabci


gdqi

dq
abc

abcv


dqv

PWM

dq
abc

de

qe

qv

dv

wLf

wLf

PI

PI

di

qi

drefi

qrefiabce

Current regulator Voltage regulator

Primary regulator

C
u
rr

en
t 

lim
it
er

DER
C

gabci

abcv

Power

Calculation
Q

P
Filter

mQ

mP

refw

V-f dependent load

  

  

➢ Key idea

o Generate supplementary signal 

based on real-time DER capacity 

and feed it to primary regulator

o Consider the impact of load 

sensitivity to voltage and frequency



Methodology (2)
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➢ Proposed Control framework
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❑ Power regulator and V-f regulator generate

supplementary signals for the primary regulator

❑ Power regulator generates control signals 

based on the error between inverter output and 
DER capacity, which help limit the output of grid-

forming inverters

❑ V-f regulator generates control signals based on 

voltage and frequency deviations, which 
reallocates limited generation for acceptable V-f

deviations

Diagram of the proposed decentralized and 

coordinated control framework



Proposed Approach (1)
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➢ IBR integrated power flow
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6N decision variables: 

1 global frequency, N voltage, N-1 power angle, N active inverter output, N active load, 

N active inverter output, and N reactive inverter output.



Proposed Approach (2)
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➢ IBR integrated power flow considering the 

proposed framework

o Primary regulator become invalid due to DER inadequacy

o 2N Droop equations are changed to N capacity constraints
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➢ New equilibrium

o Given (Pinv,i’, Qinv,i’) on the capacity 

circle, there are 4N state variables 

and 4N equations left. 

o Then for each (Pinv,i’, Qinv,i’), the 
corresponding new equilibrium V-f 

is solvable.

Show the existence of new equilibrium

when integrating the proposed control 

framework

B. She, F. Li, H. Cui, J. Wang, L. Min, O. Oboreh-Snapps, R. Bo, “Decentralized and Coordinated V-f Control for Islanded Microgrids 

Considering DER Inadequacy and Demand Control,” IEEE Transactions on Energy Conversion, vol. 38, no. 3, pp. 1868-1880, Sept. 2023.



Case Study in An Ideal System

25

V-f deviation under bounded generation 

constraints
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➢ IBR-based 3-bus system

o Assume the total load is close to but small than the 

total DER capacity

o An intentional load increase at the initial operating 

point (P0, Q0) and the total load exceed the DER 

capacity. 
o Predict the new equilibrium
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Case study in a Real Microgrid (1)
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➢ Modified Banshee Microgrid

Single-line diagram of modified Banshee microgrid
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Parameter G1 G2 G3

Filter
LF /H 5×10-5 2.5×10-5 5×10-5

CF /F 1×10-5 1×10-5 1×10-5

Current regulator gains / [kP, kI] [0.5, 2] [0.5, 2] [0.5, 2]

Voltage regulator gains / [kP, kI] [0.1, 1] [0.1, 1] [0.1, 1]

Droop gains / [kdF, kdV] [0.01, 0.05] [0.005, 0.025] [0.01, 0.05]

Power regulator gains /

[kps, kis, kw, kv]
[0.5, 10, 0.04, 0.5] [0.25, 5, 0.02, 0.25] [0.5, 10, 0.04, 0.5]

V-f regulator gains / 

[kpf, kif, kpv, kiv]
[0.5, 10, 0.5, 10] [0.5, 10, 0.5, 10] [0.5, 10, 0.5, 10]

Table. 1 Control parameters of grid-forming inverters



Case study in a Real Microgrid (3)
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Scenario 1: P-Q regulator + V-f regulator

Dynamic inverter output

V-f response: increase Q, decrease P

Static operation point
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➢ Voltage over dip and recovery



Case study in a Real Microgrid (4)
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Scenario 2: P-Q regulator + V-f regulator

Static operation point

Dynamic inverter output

Capacity line

V-f response: increase P, decrease Q

➢ Frequency over dip and recovery
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Summary

29

❑ DER inadequacy poses challenges to the operation of grid-forming inverters in 

islanded microgrids.

❑ Power regulator limits the output of grid-forming inverters by generating 

supplementary control signals based on the error between inverter output and 

DER capacity.

❑ V-f regulator generates control signals based on voltage and frequency 

deviations, which reallocates limited generation for acceptable V-f deviations.
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Motivation and Objective

31

➢ Background

The penetration of IBRs decrease the inertia of microgrids. 

Existing research address low inertia problems by

o Device-level Control: Design new control algorithm to 

improve the inertia support capability of IBRs

o Grid-level Dispatch: integrate dynamic frequency 
constraints into the economic operation framework

Decoupled in the conventional synchronous 

generator (SG) dominant system because

o Distinct time scales

o Physical inertia of SGs is fixed

IBRs make a difference !

➢ Objective

Diagram of virtual inertia scheduling for 

future low inertia microgrids

Develop a unified inertia management 

framework that combines the device-level control 

and grid-level economic operation and leverages 

the inertia support capability of grid component.



Virtual Inertia Scheduling (VIS)

32

o VIS: an inertia management framework that targets 

security-constrained and economy-oriented

inertia scheduling and generation dispatch of 

microgrids with a large scale of IBRs. 

o VIS schedules the power setting points, as well as 

the control modes and control parameters of 

IBRs to provide secure and cost-effective inertia 

support. 

➢ Concept of VIS

VIS can be integrated into the existing economic 

operation framework, i.e., UC, RTED, and AGC. 

➢ General Formulation of VIS
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s.t. 1) Standard dispatch constraints

4) Stability constraints

2) 

3) 

Inertia support cost

Generation cost

o Hourly dispatch or minutes dispatch

o Single stage or multiple stage 

o Normal load change or given contingency set

B. She, F. Li, H. Cui, J. Wang, Q. Zhang, R. Bo, “Virtual Inertia Scheduling for Real-time Economic 

Dispatch of IBR-penetrated Power Systems,” IEEE Transactions on Sustainable Energy, In-Press, 2023.



VIS for Real-time Economic Dispatch
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➢ VIS for Real-time Economic Dispatch (VIS-RTED)  
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objective: Minimize quadratic generation cost 

o RTED: a multi-interval optimization problem with 

the objective of minimizing the total generation cost
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1) Power balance + line limit constraints

Opportunity cost caused 

by inertia support

o Specified VIS-RTED

1) One-hour dispatch with 12 intervals

2) Quadratic generation cost

3) Opportunity cost caused by inertia support

4) Additional decision variables of virtual inertia and 
damping

5) Additional dynamic constraints of frequency nadir 

and RoCof

2) 

3) 

4) 

“ How to quantify and then linearize

dynamic power of IBR (         ) and frequency nadir (        )?”  nadirfibr

peakP

Question
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➢ Dynamic estimation ➢ Deep learning assisted linearization

Uniform frequency dynamics model of IBR-penetrated grids
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o mth hidden layer of neural 

network (NN) with ReLU

activation function: 

o Linearization by introduction 

binary variables am 
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➢ Test System

Single-line diagram of modified IEEE-39bus system

VIS for Real-time Economic Dispatch

➢ Deep learning training results

(a) Training loss of frequency nadir prediction; 

(b) Training loss of IBR peak power prediction; 
(c) Testing of frequency nadir prediction; 
(d) Testing of IBR peak power prediction.
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➢ Scheduling results

VIS for Real-time Economic Dispatch

➢ One-hour load profile

Cost scheduling results

Virtual inertia and damping scheduling results

Reservation scheduling results
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➢ Dynamic Validation Through One-hour Time-domain Simulation

VIS for Real-time Economic Dispatch

Dynamics results through full-order time-domain simulation



38

Microgrid Virtual inertia Scheduling

Diagram of islanded microgrid modified from IEEE 123-Bus system

➢ Microgrid VIS

• Challenge 1: Stability guarantee

As device-level control parameters, virtual 

inertia and damping play a critical role in 

microgrid stability.

• Challenge 2: Resilient operation

Addressing security constraints, both static 

and dynamic, during extreme events remains 

a significant and challenging task.

✓ Model-based? -> Scalability   

✓ Data-driven?  -> Reliable Data; 

Performance Guarantee

✓ Hybrid Method? 
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❑ Although IBRs present low inertia characteristics, their controllability and 

flexibility allow for the design of an advanced inertia management framework for 

future low-inertia power grids. 

❑ Virtual inertia scheduling (VIS) is an inertia management concept that targets 

security-constrained and economy-oriented inertia scheduling and generation 

dispatch of microgrids with a large scale of IBRs. 

❑ The formulation of VIS is quite flexible and can be integrated into the conventional 

economic dispatch framework, but with customized decision variables and 

objective functions, operational conditions, and critical dynamic constraints.
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❑ The proposed P-Q controller can track the predefined power trajectory with any time constant. 

It enables the customized response speed of IBRs and thus improved microgrids flexibility.

❑ The proposed V-f control framework can accurately regulation the output of droop-controlled 

GMF inverters and improve V-f deviation with limited DER capacities. It enables the coordination 

of P-Q generation, V-f regulation, and demands control, and thus improved microgrids flexibility 

and stability.

❑ The proposed virtual inertia scheduling (VIS) can effectively management the inertia of IBR-

penetrated microgrids, and thus improves microgrid security, stability, and economy. 

➢ Core contribution: improve microgrid flexibility and dynamic performance with IBRs

❑ Relevant publications: 

• Buxin She, Fangxing Li, Hantao Cui, Jingqiu Zhang, and Rui Bo, “Fusion of Microgrid Control with Model-Free Reinforcement Learning: Review and Vision,” IEEE 

Transactions on Smart Grid, vol. 14, no. 4, pp. 3232-3245, July 2023.

• Buxin She, Fangxing Li, Hantao Cui, Hang, Shuai, Oroghene Oboreh-Snapps, Rui Bo, Nattapat Praisuwanna, Jingxin Wang, and Leon M. Tolbert, “Inverter PQ Control with 

Trajectory Tracking Capability for Microgrids Based on Physics-informed Reinforcement Learning,” IEEE Transactions on Smart Grid, In-Press, 2023.

• Buxin She, Fangxing Li, Hantao Cui, Jinning Wang, Liang Min, Oroghene Oboreh-Snapps, and Rui Bo, “Decentralized and Coordinated V-f Control for Islanded Microgrids 

Considering DER Inadequacy and Demand Control,” IEEE Transactions on Energy Conversion, vol. 38, no. 3, pp. 1868-1880, Sept. 2023.

• Buxin She, Fangxing Li, Hantao Cui, Jinning Wang, Qiwei Zhang, and Rui Bo, “Virtual Inertia Scheduling for Real-time Economic Dispatch of IBR-penetrated Power Systems,” 

IEEE Transactions on Sustainable Energy, In-Press, 2023.



Acknowledgements

This work was supported by 

US DOD ESTCP program under the grant number EW20-5331 

Other Contributors: Hantao Cui, Jinning Wang, Hang Shuai, 
Oroghene Oboreh-Snapps, Rui Bo, 

Nattapat Praisuwanna, Jingxin Wang, Leon M. Tolbert

7-41



Backup Slides

42



43

❑ Derive kp(t) and ki(t) that can ensure the exponential PQ trajectory with specific time constant

Step input signal:

Exponential error:

Ideal response:

General PI controller

Adaptive gain PI controller

in a general system

( ) 1 ( )
[ ( ) ( ) ( ) ]

( ) ( )
p i

Y s U s
K s U s K s

U s U s s
=  + 

➢ Step 1:

➢ Step 2:

Model-based Analysis (1)

Fixed gains:
( ) ( )

( ) ( )
( )
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p i p

kU s Y s
Y s k U s k k

s U s s
= +  = +g g

Adaptive gains:
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Conclusion:
( ) ( )

( ) ( ) ( )
( )

p i

Y s E s
K s E s K s

G s s
=  + 

• For the right side:

1 1 1
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• For the left side:
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System transfer function G(s) 

determines whether ‘left side = right 

side’ has a solution in time domain.

✓Condition 1: [ ( )] 0D n s =

✓Condition 2:

✓Condition 3:
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➢ Step 3:

❑ Derive kp(t) and ki(t) that can ensure the exponential PQ trajectory with specific time constant

Model-based Analysis (2)

(D means degree)



Data-driven Implementation: DRL

( )t ta s= A

RL agent

( )t ta s
▪ Action space A

▪ Policy

Environment

1( , )t t ts a s+P

▪ State space S ▪ Reward function

▪ State transition probability
1 1( , , )t t t tr s a s+ +R

1 1( , , )t t t tr s a s+ += R

1 ( , )t t ts a s+ = P S
Iteration

Reinforcement learning :

❑ RL is a basic machine paradigm formulated as a 
Markov Decision Processes.

Deep reinforcement learning:

❑ Use deep neural network to map: 
State, action → value (Q-value);

State → action

Training Target:

❑ a well-trained RL agent chooses optimal actions for

maximum accumulated reward (best performance)

45
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➢ Scenario 1-1: Scheduling Pref change ➢ Scenario 1-2: Scheduling Pref and Qref change

inv trjP P P = −Where                              is real-time trajectory tracking error.
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➢ Scenario 2: Generation loss and Power Support

inv trjP P P = −Where                              is real-time trajectory tracking error.

➢ Scenario 3: Grounded fault



Summary

❑ The system transfer functions are categorized into three conditions, determining whether there 

exists a time-varying-gain adaptive PI controller that can track an exponentially traceable curve. 

o In Condition 1, fixed-gains work; 

o in Condition 2, time-varying gains are required; 

o in Condition 3, no adaptive PI controller works. 

❑ The proposed controller outperforms the conventional fixed-gain and adaptive PI controllers. 

Without manual re-tuning, it can accurately track the predefined trajectory with any assigned 

time constant.

❑ The microgrid inverter-based PQ control system meets Condition 2. After implementing the 

proposed adaptive PI controller, the active and reactive power output of inverters can track a 

predefined exponential trajectory. 

❑ The model-based analysis provides guidelines for deep RL training, which relieves the training 

pressure and saves training time. In turn, the implementation of physics-informed deep RL 

solves the problem of unavailability and uncertainty in the model-based method. 
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