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Definition

O An integrated energy system composed of
multiple distributed energy resources
(DERs), energy storage systems, and
local loads, which can operate in either
grid-connected mode or islanded mode.

Solar PV and Wind DERSs

Battery Storage n = -

nm = O
Microgrid Operation ‘@

and Control Center

Geothermal _
Power

Diesel Generators

Characteristic

O Small system size

U High penetration of inverter-based
resources (IBRs)

U Low system inertia

U High R/X ratio of the feeders

O Strong voltage and frequency (V-f) coupling

Electric Vehicles




High-level
Research
Map of
Microgrid
Control

(1) Operation mode

(2) Function grouping

(3) Timescale

(4) Hierarchical structure

(5) Communication interface

(6 Control techniques

* Islanded mode
Controlled as a voltage source; 6
1s self-generated

* Grid-connected mode
Controlled as current source; §
1s set by phase-locking to the
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@ Grid U Inverter Module \

@ Terminal Voltage-ref Module
() curenrer v Modularized

Powc'ar' n Volta'ge Module con t o I

Auxiliary Service U
Grid-following ’ ‘ Grid-forming Optimization Module

J Note: ‘U’ and ‘N’ are logic symbols. b I O C kS fo r
/ B ol *  ‘U’means ‘and’
IBRS

* ‘V’means ‘or’

Pt i l 1+T,s Tfs- o, U,
1+T,s M A
= — {1 O TEe—

O O

Improve microgrid:

0 P PLL 0wy

o Flexibility

‘ o F— PD4_ {.-"AQD‘_ B . o Stab | I |ty

| ; R , | ! man: ! L A, —— Auxiliary service
o Energy management | i i.gq— Auxiliary service | | @, «—— Energy management | e J

| w, «—— (Setting pointing) | v (Supplementary signal) | wr— (Setting pointing) | oAk (Supplementary signal) O Economy

e P ke




/ IEEE
Gpts | GIEEE

Power & Ei

Fusion of Microgrid
Control with RL

Application and Challenges
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Concept

Reinforcement learning :
» RL is a basic machine paradigm formulated as a

RL agent Markov Decision Processes (MDP)
= Action space .4
= Policy z(a,|s,) Model-free Reinforcement Learning:
» Does not assume knowledge or an exact mathematical
........ -4*--........".E St+l — ]P)(at ’ St) c ‘53 mOdeI Of the enV|ronment

.............. i | R =R, ,S,)
: Deep Reinforcement Learning (DRL):
4 Environment h P g (DRL):
................................................................................................................ > Use deep neural network to map state and action
" State space.s = Reward function R(r,,,|s,,a,,S...) to reward/value and actions
.- .- » Can be extended to multi-agent DRL
= State transition probability P(s,,|a,,s,)

/

Target: a well-trained RL agent to choose optimal actions
for maximum accumulated reward (best performance)
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Application Area and The Way of Fusion

» RL can handle either control or optimization tasks in microgrids.

1) System Planning ﬁi E$E

2) Economic Operation :

~

1) Model identification and
parameter tuning

2) Supplementary
signal generation

3) Voltage regulation

00|
4) Frequency regulation

Microgrid Environment and Tasks The Role of RL Agents in Microgrids

3) Controller substitution

/
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Challenges and Gaps

High

Coverage

Fidelity

1) Environment 2) Generalization 4) Security

» Physics-informed Reinforcement Learning ﬁ -’
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From Direct Application
to Physics Priors

Overview



@EEES
Physics-informed RL in Microgrid \ e

Partial Differential Equation
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Physics Priors in machine learning 1] oo S
/Aa{‘t‘éan B e :
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1) Observational bias: This approach uses multi-modal data that
reflects the physical principles governing their generation.

equilibrium

Y

2) Learning bias: Reinforce prior knowledge of physics through soft
penalty constraints, i.e., PINN.
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. Relu Network |:| Linear Network |:| Physics Transformations

Deep Lagrangian networks (DLN) Bl
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3) Inductive biases: Custom neural network-induced "hard’
constraints can incorporate prior knowledge into models, i.e., DLN.
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[1] Banerjee, Chayan, et al. "A survey on physics informed reinforcement learning: Review and open problems." arXiv preprint
arXiv:2309.01909 (2023).

[2] Peng, Grace CY, et al. "Multiscale modeling meets machine learning: What can we learn?." Archives of Computational Methods in
Engineering 28 (2021): 1017-1037.

3] Lutter, Michael, Christian Ritter, and Jan Peters. "Deep lagrangian networks: Using physics as model prior for deep learning." arXiv
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Physics-informed Reinforcement Learning (PIRL)

Physics-informed RL involves incorporating physics structures, priors, and real-world physical variables
into the policy learning or optimization process.

Physics priors for task Physics priors for Physics priors for \

simplification performance guarantee additional regulation

« action/state space
value reduction \ « data augmentation
Network g :

« efficient reward design
Policy - action/state space » physics embedding for « data augmentation
Network reduction ensuring static security « additional learning bias

» physics embedding for « additional law integration

ensuring dynamic stability

safe exploration /




Example 1

@rf;ﬁs

Power & Energy Society®

$IEEE

N

Inverter P-Q control with Trajectory Tracking Capability [1]

70r

: % %Ideal response

Unsatisfactory response

Desired P
Not well-controlled P
—— Well-controlled P

trajectory

0 01 02 03 04 05 06 07 08 0.9 1
time (s)

Objective: the actual response of IBR
following the desired trajectory

Physics Priors reduce learning space from
function space to real space
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[1] B She, F Li, H Cui, H Shuai, et al. "Inverter PQ control with trajectory tracking capability for microgrids based on physics-
informed reinforcement learning." IEEE Transactions on Smart Grid 15.1 (2023): 99-112.
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Example 2

Dynamic Multi-Microgrid Formation for Enhanced Resilience 1]

@ Other nodes

..SW. -

Step 17-20

Original DS Topology transformation

1 Topology transformation

* Transfer a splitting problem to a reconfiguration problem
* Reduce action space from an exponential form 2" to a polynomial form C (w, n-n,).

[1] J. Zhao, F. Li, S. Mukherjee, C. Sticht, "Deep Reinforcement Learning based Model-free On-line Dynamic Multi-
Microgrid Formation to Enhance Resilience," IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 2557-2567, July 2022.
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Stability Guaranteed RL for Frequency Regulation [*]
L : L i
.BR‘ 3 R i R 1 @ yapunov function V
p R G = V() =0
3 V(Ax) > 0,Vx € D\ {0}
v Measurement sess V(Ax) = VVAx < 0, VAx € D\{0}
i iy Vo P | a
l \(&a‘)‘ Safe MBRL based
et =l JosGhased | Frequeney Designing the Lyapunov function as the value function of the
b4 — Bellman’s equation to guarantee stability.
Wn Vi Puet Quur
Figure 1. Diagram of frequency GFM inverter based V =] (X) —r (X’”W (X)) +yJ |:un_1 (X’”W (X)):|

primary frequency control

[1] H. Shuai, B. She, J. Wang and F. Li, "Safe Reinforcement Learning for Grid-Forming Inverter Based Frequency Regulation with
Stability Guarantee," in Journal of Modern Power Systems and Clean Energy, doi: 10.35833/MPCE.2023.000882.
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» RL can handle either control or optimization tasks in microgrids,
but there are remaining gaps in the perspective of environment,
generalization, scalability, and security.

» PIRL can be leveraged to streamline training processes, ensure
security and stability, and enhance generalization and scalability.
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