

Fusion of Microgrid Control with Reinforcement Learning: From Direct Application to Physics Priors

Fangxing(Fran) Li, The University of Tennessee Knoxville Buxin She, Pacific Northwest National Laboratory

07/23/2024

Microgrid Control Framework

Microgrid

Definition

An integrated energy system composed of multiple distributed energy resources (DERs), energy storage systems, and local loads, which can operate in either grid-connected mode or islanded mode.

IEEE

Characteristic

- □ Small system size
- High penetration of inverter-based

resources (IBRs)

- Low system inertia
- □ High R/X ratio of the feeders
- □ Strong voltage and frequency (V-f) coupling

High-level Research Map of **Microgrid** Control

- 2 Function grouping
- ③ Timescale
- (4) Hierarchical structure
- (5) Communication interface
- 6 Control techniques

Islanded mode

is self-generated

Fusion of Microgrid Control with RL

Application and Challenges

Reinforcement Learning

Concept

Reinforcement learning :

 RL is a basic machine paradigm formulated as a Markov Decision Processes (MDP)

IFFF

Model-free Reinforcement Learning:

Does not assume knowledge or an exact mathematical model of the environment

Deep Reinforcement Learning (DRL):

- Use deep neural network to map state and action to reward/value and actions
- Can be extended to multi-agent DRL

Target: a well-trained RL agent to choose optimal actions for maximum accumulated reward (best performance)

RL in Microgrid Control

Application Area and The Way of Fusion

> RL can handle either **control** or **optimization** tasks in microgrids.

The Role of RL Agents in Microgrids

RL in Microgrid Control

Challenges and Gaps

Physics-informed Reinforcement Learning

From Direct Application to Physics Priors

Overview

Physics-informed RL in Microgrid

Physics Priors in machine learning ^[1]

1) Observational bias: This approach uses multi-modal data that reflects the physical principles governing their generation.

2) Learning bias: Reinforce prior knowledge of physics through soft penalty constraints, i.e., PINN.

3) Inductive biases: Custom neural network-induced 'hard' constraints can incorporate prior knowledge into models, i.e., DLN.

IEEE

Physics informed neural network (PINN) [2]

[1] Banerjee, Chayan, et al. "A survey on physics informed reinforcement learning: Review and open problems." *arXiv preprint arXiv:2309.01909* (2023).

[2] Peng, Grace CY, et al. "Multiscale modeling meets machine learning: What can we learn?." Archives of Computational Methods in Engineering 28 (2021): 1017-1037.

[3] Lutter, Michael, Christian Ritter, and Jan Peters. "Deep lagrangian networks: Using physics as model prior for deep learning." *arXiv* preprint arXiv:1907.04490 (2019).

Physics-informed RL in Microgrid

Physics-informed Reinforcement Learning (PIRL)

Physics-informed RL involves incorporating physics structures, priors, and real-world physical variables into the policy learning or optimization process.

		Physics priors for task simplification	Physics priors for performance guarantee	Physics priors for additional regulation
	Value Network	 action/state space reduction efficient reward design 	١	 data augmentation
	Policy Network	 action/state space reduction 	 physics embedding for ensuring static security physics embedding for ensuring dynamic stability 	 data augmentation additional learning bias additional law integration safe exploration

Example 1

Inverter P-Q control with Trajectory Tracking Capability [1]

Objective: the actual response of IBR following the desired trajectory

Physics Priors reduce learning space from **function space** to **real space**

[1] B She, F Li, H Cui, H Shuai, et al. "Inverter PQ control with trajectory tracking capability for microgrids based on physicsinformed reinforcement learning." *IEEE Transactions on Smart Grid* 15.1 (2023): 99-112.

Example 2

Dynamic Multi-Microgrid Formation for Enhanced Resilience^[1]

Topology transformation

- Transfer a splitting problem to a reconfiguration problem
- Reduce action space from an exponential form 2^w to a polynomial form C (w, n-n_g).

[1] J. Zhao, F. Li, S. Mukherjee, C. Sticht, "Deep Reinforcement Learning based Model-free On-line Dynamic Multi-Microgrid Formation to Enhance Resilience," *IEEE Transactions on Smart Grid*, vol. 13, no. 4, pp. 2557-2567, July 2022.

Example 3

Stability Guaranteed RL for Frequency Regulation ^[1]

Figure 1. Diagram of frequency GFM inverter based primary frequency control

Lyapunov function V

$$\begin{cases} V(0) = 0 \\ V(\Delta x) > 0, \forall x \in D \setminus \{0\} \\ \dot{V}(\Delta x) = \nabla V \dot{\Delta x} \le 0, \forall \Delta x \in D \setminus \{0\} \end{cases}$$

Designing the Lyapunov function as the value function of the Bellman's equation to guarantee stability.

$$V = J(x) = r(x, \boldsymbol{\pi}_{W}(x)) + \boldsymbol{\gamma} J \left[u_{n-1}(x, \boldsymbol{\pi}_{W}(x)) \right]$$

[1] H. Shuai, B. She, J. Wang and F. Li, "Safe Reinforcement Learning for Grid-Forming Inverter Based Frequency Regulation with Stability Guarantee," in *Journal of Modern Power Systems and Clean Energy*, doi: 10.35833/MPCE.2023.000882.

Take Aways

Take Aways

- RL can handle either control or optimization tasks in microgrids, but there are remaining gaps in the perspective of environment, generalization, scalability, and security.
- PIRL can be leveraged to streamline training processes, ensure security and stability, and enhance generalization and scalability.

Thank you!

Q&A