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Introduction

Background and Objective



Background:

Future Inverter-based Power Grid

• Higher uncertainty
• Faster dynamics of inverter-

based resources (IBRs)
• Elements that are difficult to 

model
• Model and parameter 

accessibility/Privacy
Figure 1. Diagram future inverter-dominant power grid



Background:

Reinforcement Learning in Power Grid Control

Figure 2. Diagram Reinforcement Learning

Application Domain
• Frequency regulation
• Voltage regulation
• System operation and planning

Application Challenges
• Environment
• Explainability
• Generalization
• Static Security
• Dynamic Stability



Objective:

Safe RL for Frequency Regulation with uncertain system 
parameters [1] 

• Frequency regulation based on grid-forming inverters
• Stability guarantee
• Parameter uncertainty – dynamic (virtual) system inertia and 

damping

[1] H. Shuai, B. She, J. Wang and F. Li, "Safe Reinforcement Learning for Grid-Forming Inverter Based Frequency Regulation with 
Stability Guarantee," in Journal of Modern Power Systems and Clean Energy, doi: 10.35833/MPCE.2023.000882.



Methodology

Safe RL for Inverter Control and 
Frequency Regulation



Overview:

Optimal Frequency Regulation/Control Policy 

Figure 3. Diagram of frequency GFM inverter based
 primary frequency control
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Where           is the optimal control policy and      is 
the region of attraction (ROA). 
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Guaranteed stability



Overview:

Proposed Safe RL Strategy embedding GP Model



Key Component 1:

Gaussian Process Model to Quantify System Uncertainty

Figure 5. Diagram of 
Gaussian Process [1]
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• Linear kernel

• Mat´ern kernel

GPs model can approximate and quantify the uncertainty in the 
dynamic system model under a predefined confidence level. 

[1] Downloaded from: https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html



Key Component 2:

Stability Guarantee based on Lyapunov Function

Lyapunov function V

Certified a subset of ROA

Positive invariant domain in a ROA

( ) ( )( ) ( )( )( )1W n WV J x r x, x J u x, x  −= = +

Find policy                such that V is decreasing( )W x



Key Component 3:

Policy Update through Adaptive Dynamic Programming

Piecewise Linear Bellman Equation
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Maximize the accumulated rewards

Lagrange Relaxation to guarantee 
the third criteria (stability)

Guarantee stability

Safely improved by approximate dynamic programming (ADP) to find the 
optimal control policy with guaranteed stability



Validation

Case Study (Numerical Simulation)



Training Results

Reward curve and Exploration

Figure 1. Converged Reward Curve Figure 2. Relationship between ROA and Exploration 
Process



Agent performance

Frequency Deviation under Various Control Policy

Figure 1: Safe RL vs Linear Control Figure 2: Safe RL vs Conventional RL

• Linear control and 
conventional RL cannot 
guarantee frequency 
stability under large 
disturbance, but safe RL can

• Safe RL have better 
frequency response 
performance



Agent performance

Safe RL under Varying System Parameters 

• Safe RL is robust to 
virtual inertia and 
damping uncertainty.



Conclusion

Take Aways and Next Steps



Take aways

• Safe RL ensures dynamic stability under various disturbance. 
Conventional RL may loss stability under large disturbance.

• Safe RL is achieved by designing the Lyapunov function as the value 
function of the Bellman’s equation.

• Safe RL is robust to system uncertainty.



Next Steps

• Scalability issue for dynamic stability guarantee (ROA quantification)

• Embed static security constraints

• Explore explainability for train RL-based policy
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Thank you!

Q&A
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