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Introduction

Background and Objective
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Background: \ Lrad

Future Inverter-based Power Grid

 Higher uncertainty
 Faster dynamics of inverter-
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Figure 1. Diagram future inverter-dominant power grid
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Reinforcement Learning in Power Grid Control

Application Domain

RL agent :
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L T 22 el . .
e Application Challenges
Environment
................................................................................................................ ® Environment
» State space § = Reward function R(r,_|s,.q,.s,.,)

Explainability
Generalization
Static Security
Dynamic Stability

= State transition probability P(s,.,|a,.s,)

Figure 2. Diagram Reinforcement Learning
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Safe RL for Frequency Regulation with uncertain system
parameters [1]

* Frequency regulation based on grid-forming inverters

e Stability guarantee
 Parameter uncertainty — dynamic (virtual) system inertia and

damping

[1] H. Shuai, B. She, J. Wang and F. Li, "Safe Reinforcement Learning for Grid-Forming Inverter Based Frequency Regulation with
Stability Guarantee," in Journal of Modern Power Systems and Clean Energy, doi: 10.35833/MPCE.2023.000882.
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Methodology

Safe RL for Inverter Control and
Frequency Regulation



$IEEE

: \ (eres
Overview:

Optimal Frequency Regulation/Control Policy

e L R 1 minu' Ru + x' Qx
] i ONE
IBR LC Filter (¢ L Vo | | (
A T i e d_g )
o dt
v* Measurement ‘BESS do

M_:Ps,et_Pi_Dw_u(e’w)
i i, Vo P; l Q; t < dt
| («, 9] > P=> Vv, [Bij sin(6,-6,)+G; cos (6, -6, )]

Voltage and <_(£J_V)_ VSG-based Safirl\:c?f:nizsed jelio)
Current Control Power Control Regulation Control -
bAoA u<u=f(x)<u
Wn Vi Pset Qe Xe® |— Guaranteed stability

.

Figure 3. Diagram of frequency GFM inverter based
primary frequency control

Where ((.) is the optimal control policy and @ is
the region of attraction (ROA).




Overview:

Proposed Safe RL Strategy embedding GP Model

Approximate Dynamic Gaussian Process (GP)

Programming (ADP) Updated GP model of Model
the GFM inverter 0

Compute policy tusing Eq. (7) g ://
n=argminY[r+y] + ..
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$IEEE

Al —v + Ly, 7)] Update GP model with new measurements
Lyapunov
Control policy 1t function v= 04,11 | Measurements of
¥ W1 system states
Region of Attraction Select most uncertain
(ROA) state-action pairs

GFM Inverter Dynamics

¢, = argmaxc, from ROA

W1

s.t.vicve(;))(i)rj)ﬁz:;lgzig:(x)) ( ek]?uk) > 9k+1] _ f([f)ﬂ ’uk)

ROA = {(x,u)|u,(x m,(x)) < c,}

(0%




$IEEE

Key Component 1:

Gaussian Process Model to Quantify System Uncertainty

Gaussian process regression on noise-free dataset

0017y onserations GPs model can approximate and quantify the uncertainty in the
—— Mean prediction

"] = o5% confidence interva dynamic system model under a predefined confidence level.

* Linear kernel
k. (x,x")=x"x’
* Mat’ern kernel
0 2 4 ) 6 8 10 1 (\/Ed(X,Xl)J Kv(@d(X’XI)J

K (X,X") =

’ 1
Figure 5. Diagram of F(V) 2
Gaussian Process (1!

[1] Downloaded from: https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html
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Key Component 2:

Stability Guarantee based on Lyapunov Function

Lyapunov function V

V() =0
I viAx) > 0, ¥x € D\{0} m) Certified a subset of ROA
V(Ax) = VVAx < 0,VAx € D\{0}

S = {Ax e R" | V(AXN\S oz} with S C DOA » Positive invariant domain in a ROA

V =J(x)=r(x7m (x))+7J (un—l(x’ﬂW (X)))

Find policy =, (X) such that Vis decreasing
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Policy Update through Adaptive Dynamic Programming

& =arg min Z r (X7, (X))+73, (un_l(x,zrw (x))) +l(un (X, (X))=V(x)+ LAvr)

my €llp  xeXt

Piecewise Linear Bellman Equation Lagrange Relaxation to guarantee
the third criteria (stability)

¥ 3

Maximize the accumulated rewards Guarantee stability

Safely improved by approximate dynamic programming (ADP) to find the
optimal control policy with guaranteed stability
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Validation

Case Study (Numerical Simulation)



Training Results
Reward curve and Exploration
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Figure 1. Converged Reward Curve Figure 2. Relationship between ROA and Exploration

Process
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Frequency Deviation under Various Control Policy
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Linear control and
conventional RL cannot
guarantee frequency
stability under large
disturbance, but safe RL can

Safe RL have better
frequency response
performance
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Safe RL under Varying System Parameters
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Conclusion

Take Aways and Next Steps
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Take aways

 Safe RL ensures dynamic stability under various disturbance.
Conventional RL may loss stability under large disturbance.

e Safe RL is achieved by designing the Lyapunov function as the value
function of the Bellman’s equation.

e Safe RL is robust to system uncertainty.
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Next Steps \

e Scalability issue for dynamic stability guarantee (ROA quantification)

* Embed static security constraints

 Explore explainability for train RL-based policy
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